© NASA/GSFC (ilustração do disco formado no buraco negro)
A evidência vem de um tipo específico de raio-X padrão, apelidado de "batimento cardíaco" por causa de sua semelhança com um eletrocardiograma.
O buraco negro foi denominado IGR J1709-3624 após a obtenção das coordenadas astronômicas de sua posição no céu. O sistema binário combina uma estrela normal com um buraco negro que pode pesar menos do que três vezes a massa do Sol; que está perto do limite teórico de massa, onde os buracos negros se tornam possíveis.
O gás da estrela normal flui em direção ao buraco negro e forma um disco em torno dele. A fricção dentro do disco aquece o gás a milhões de graus, o que é quente o suficiente para emitir raios-X. Variações cíclicas na intensidade dos raios-X observadas refletem processos que ocorrem dentro do disco de gás. Os cientistas acreditam que as mudanças mais rápidas ocorrem perto do horizonte de eventos do buraco negro.
O sistema binário foi identificado durante uma explosão em 2003. Arquivamento de dados de várias missões espaciais mostram que se torna ativo cada poucos anos. Sua explosão mais recente começou em fevereiro e está em curso. O sistema está localizado na direção da constelação do Escorpião, mas a distância não está bem estabelecida, localizado a 16.000 anos-luz ou mais de 65.000 anos-luz de distância.
O detentor do recorde para uma ampla variabilidade de raios-X é um outro sistema binário do buraco negro chamado GRS 1915+105. Este sistema é único em exibição de mais de uma dúzia de padrões altamente estruturados, tipicamente com duração entre segundos e horas.
"Nós pensamos que a maioria destes padrões representam ciclos de acumulação e de ejeção de um disco instável, e agora vemos sete deles no IGR J17091", disse Tomaso Belloni do Observatório Brera em Merate, na Itália.
O GRS 1915 tem um forte campo magnético perto do horizonte de eventos, onde ejeta parte do gás em direções opostas com cerca de 98% da velocidade da luz.
Mudanças no espectro de raios-X observadas pelo RXTE durante cada batimento revelam que a região mais interna do disco emite radiação suficiente para empurrar para trás o gás, criando um vento forte para fora que interrompe o fluxo para dentro. Eventualmente, o disco interno fica tão brilhante e quente que essencialmente se desintegra e mergulha em direção ao buraco negro, restabelecendo o jato e começando um novo ciclo. Todo esse processo acontece em menos de 40 segundos.
A emissão do batimento do IGR J17091 pode ser 20 vezes mais fracas que do GRS 1915 e pode circular cerca de oito vezes mais rápido, em menos de cinco segundos.
Estima-se que a massa do GRS 1915 é cerca de 14 vezes da massa do Sol, colocando-o entre os buracos negros mais maciços conhecidos que se formaram por causa do colapso de uma única estrela.
Esta análise é apenas o início de um programa maior para comparar esses dois buracos negros em detalhe utilizando dados do RXTE, do satélite Swift da NASA e do observatório XMM-Newton.
Um artigo descrevendo esta pesquisa foi publicado no The Astrophysical Journal Letters.
Um artigo descrevendo esta pesquisa foi publicado no The Astrophysical Journal Letters.
Nenhum comentário:
Postar um comentário